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- Gaussian or Fresnellian distribution 

3~o- = (~'d~)3 

c3gt~ 
-~g . . . .  (~u~/g) 3 sin 2 20 

- Lorentzian distribution: 

~/L 
- (~u , / e )  2 

(AI3) 

~¢L c~g =(~L/g)2 sin 20. (A14) 
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The image-seeking method of Buerger and the procedure of Tokonami and Hosoya appear to be 
capable of dealing with complex crystal structures via the Patterson function, provided that the periodic 
vector set is accurately determined. Unfortunately, a general and powerful method for the location 
of peaks in the Patterson function has not yet been developed, and it is the lack of such a method which 
now prevents the formulation of a general Patterson method of structure analysis. This paper presents 
further results in the author's attempts to formulate a general method of vector-set extraction by rep- 
resenting the Patterson function as a linear generalized polynomial in a system of independent inter- 
atomic functions. This approach has the advantage in that the essentially non-linear problem of vector- 
set extraction is reduced to an apparently simple linear problem, namely that of determining the co- 
efficients of the approximating polynomial. In the present paper, the Tchebycheff approximation norm 
is employed with coefficient determination by linear-programming procedures. Since linear-program- 
ming methods are flexible and extremely powerful, this Tchebycheff vector-set-extraction procedure is 
much more promising than the author's earlier published methods, which were based on interpolatory 
approximations. 

Introduction 

In order to formulate a general method of structure 
analysis, one would naturally think of working in 
terms of the Patterson function, since this function is 
not restricted to centrosymmetric structures. It is well 
known that the Patterson function may be regarded as 
a badly resolved representation of the weighted periodic 
vector set (Buerger, 1959). For a crystal containing N 
atoms per unit cell, the weighted periodic vector set 
consists of N periodic images of the crystal structure, 
and the phase problem is essentially the problem of 
separating the various points of the periodic vector set 
into these images. This separation can be accomplished 
by the image-seeking method of Buerger (1950) or the 
procedure of Tokomami & Hosoya (1965). Since 

neither of these methods has been widely used in 
practice, it might well be that their power is restricted 
in some ways which are not now apparent. At present, 
however, it appears that they could be successfully 
applied to extremely complex crystals, provided the 
weighted periodic vector set could be accurately deter- 
mined. 

In the past, the determination of the periodic vector 
set from the Patterson function has been attempted 
via various sharpening procedures (Patterson, 1934; 
Wunderlich, 1965). These sharpening methods depend 
to a large extent on the initial resolution of the Patter- 
son function, and therefore they do not appear to be 
capable of dealing with complex structures which 
produce badly resolved Patterson functions. Certain 
other methods, which in effect locate individual peaks 
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in the Patterson function, have also been proposed. 
These methods, like the symmetry-minimum function 
(Simpson, Dobrott & Lipscomb, 1965), can only be 
applied to crystals of sufficiently high symmetry, and 
are therefore non-general. 

These considerations indicate that, at the present 
time, the major difficulty in crystal-structure analysis 
via the Patterson function is the problem of extracting 
the periodic vector set. What is needed is a vastly im- 
proved sharpening procedure or a method which can, 
in some way, 'see through' the overlapping peaks of 
the Patterson function regardless of any lack of resolu- 
tion. This paper presents an attempt to formulate a 
practical method of that kind. 

The method is based on the idea of approximating 
the Patterson function by a generalized polynomial, in 
a set of interatomic functions, on a discrete set of 
points. The formulation of the approximating poly- 
nomial has been presented in an ealier paper (Goldak, 
1971). The determination of the coefficients of this 
polynomial via the solution of a system of linear equa- 
tions which results from an interpolatory approxima- 
tion has also been published (Goldak, 1969). It was 
noted that the power of this particular variant of the 
method was restricted by certain numerical difficulties 
associated with ill-conditioning of the system of linear 
equations. The present paper presents a much more 
powerful and flexible method of coefficient determina- 
tion based on a Tchebycheff or minimax approximation 
with coefficient evaluation by linear-programming 
procedures. 

The Tehebycheff approximation problem 

In this work, it is most convenient to deal with a par- 
tial Patterson function of order M, projected onto 
some crystal axis. For example, if the a crystal axis is 
used, the partial Patterson function of order M would 
be defined as 

+ M  

PM(x)= ~ KnIF~,I 2 exp [2nihx] (1) 
h= --M 

where the summation is carried out up to terms of 
Miller index M. In (1) C=bc/v where b and c are unit 
cell parameters and v is the unit-cell volume. The 
series (1) may be summed directly, or by Cesaro or 
Lanczos summation, and Kh is a summation factor 
which depends on the summation method employed 
(Goldak, 1971). 

The partial Patterson function can be written in the 
form (Goldak, 1971) 

K Nq 

PM(X)=C ~ ~ I~,(x-x],) .  (2) 
q = l  p = l  

In (2) n IMq(x-xp) represents the pth half-cell inter- 
atomic function or Patterson peak of the qth kind, 
with interatomic function parameter xg. K represents 
the number of kinds of interatomic function associated 
with the Patterson function, and Nq denotes the 

number of interatomic functions of the qth kind per 
unit cell. Each of the interatomic functions is repre- 
sented by a Fourier series of order M which may, like 
the partial Patterson function, be summed directly, or 
by Lanczos or Cesaro summation. In the case of 
sharpened Patterson functions, Lanczos or Cesaro 
summation offers real advantages (Goldak, 1971). 

For the practical computation of approximations 
on an interval, it is usually desirable to replace that 
interval by a finite set of points and to seek an approxi- 
mation which is optimum on that set. In this way the 
problem is discretized (Cheney, 1966). In the present 
case, we choose any desired crystal axis (say the a 
axis) for the analysis of the Patterson function. We 
then divide that axis into a net of Z=KD divisional 
points, where K is the number of kinds of interatomic 
function associated with the Patterson function, and 
D is the number of divisional points allowed for the 
location of each kind of interatomic function. Then 
x~ represents the x coordinate of the j th  divisional 
point for interatomic functions of the rth kind. There 
is a total of (KD-1) equal intervals in (0,½), each 
interval being of fractional length 1/(2KD-2). The 
fractional coordinate associated with a given x~ is 

, _  (r-- 1 ) + K ( j -  1) 
X j - -  2 ( K D -  1) (3) 

The sequence of divisional points is --1,~-1,--1,"1 ,,2 ,.a . . . ,  x~, 
x[, 2 a xf, xJ, .,xf, with x l = 0  and xD-~.  X 2  ' X 2  ' . . . ,  . . K _ _  1 

We then consider the generalized polynomial in the 
half-cell interatomic functions 

D K 

a(x)= 2 " "  N plM,(x-  xg). (4) 
p = l  q = l  

The coefficients N~ in (4) are now to be determined 
in some way so that G(x) will in some useful sense be a 
'good' approximation to PM(x). 

The determination of the N~ so that G(x) inter- 
polates to PM(X) on the set of KD divisional points is 
done by setting (Goldak, 1969, 1971) 

G(x~)-=PM(X~) r = l , 2 , . . . , K ; j = l , 2 , . . . , D .  (5) 

This represents a linear system of KD equations, which 
can be solved for the KD unknowns N~. In order to 
increase resolution, it would be desirable to use a very 
large number of closely spaced divisional points. 
Unfortunately, when this is done, the system (5) be- 
comes ill-conditloned or mathematically unstable, and 
the resulting N~ values tend to alternate successively 
between positive and negative values of large absolute 
magnitude. In the present paper, a Tchebycheff approxi- 
mation norm is employed to overcome these difficul- 
ties. 

According to the Tchebycheff norm, G(x) is deter- 
mined so that it is a minimax (Rice, 1964) approxima- 
tion to PM(x). The KD divisional points x} are em- 
ployed for the location of interatomic functions, but 
another set {~1,22,.. . ,20} of Q points is used for the 
evaluation of the accuracy of the approximation. We 
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then choose the N~, so that, on the set of points 
{)?l,~?z,...,)?o} the maximum error of the approxima- 
tion 

Emax = max {PM(2,)--G(2,)} (6) 
l<_i<Q 

is a minimum. Thus we consider the Q equalities 
D K 

Ei= PM(2,)- ~ ~. N ° ' n ' -  .. ol~,tqtx,-x~) i= 1,2, . ,Q (7) 
p = l  q = l  

and try to find that set of N~ values which will make 
max IEi[ as small as possible. 

l<_i<Q 

This problem can be directly formulated as a linear- 
programming problem; an extra variable S is intro- 
duced and the inequalities 

lEvi _ S i=  1 ,2 , . . . ,  O (8) 

are considered. These can be written as 

E~+ S>O } 
-E~+S>O i =  1 ,2 , . . . ,Q .  (9) 

Now the approximation problem can be stated in 
the form of a linear-programming problem as follows: 
minimize the linear form 

Z = S  (10) 
subject to the 2Q constraints 

E~+S>O } 
-E~+S>O i = 1 , 2 , . . . , Q  (11) 

and subject to the non-negativity restrictions 

N~_>0 p = l , 2 , . . . , D ; q = l , 2 , . . . , K .  (12) 

Written out in full, the linear-programming problem is: 
minimize the linear form 

Z = S  (13) 

subject to the 2Q constraints: 

D K 
o ' -  NpI~,tq(x,- x ~,) + S > PM(-~,) 

p = l q = l  
D K 

NplMo(X,--X~)-- S < PM(.2,) 
p = l q = l  

i=  1 , 2 , . . . , Q  (14) 

and subject also to the non-negativity restrictions 

N~,>_0 p = l , 2 , . . . , D ; q = l , 2 , . . . , K .  (15) 

On solving this problem, we obtain a set of positive 
real numbers N~, which, when inserted into equation 
(4) make G(x) the best possible approximation, out of 
all possible approximations, to PM(X) on the given set 
of points, in the minimax sense. The value of S thus 
obtained is the maximum error of the approximation. 

Construction of the constraint inequalities 

In constructing the inequalities (14) for the linear- 
programming problem, it is first of all necessary to 

choose a set of KD divisional points in (0,½). The 
number of kinds of interatomic function are known 
in advance, so only D must be selected. This selection 
would be done mostly in terms of the desired size of 
the linear-programming problem. For example, if K =  3 
in a given situation, then the selection of twenty in- 
teratomic-function location points in (0,½) per in- 
teratomic-function kind would result in constraints con- 
taining 61 terms when the S term is included. Further, 
it is necessary to choose the set of points {)71,22, • • • ,20} 
for the error evaluation. In general, 2Q < KD. In the 
above example, Q might well be selected as 20. Then the 
linear-programming problem would contain 40 con- 
straints with 61 terms per constraint, or 60 solution 
variables N~. It should be noted that the solution of 
linear-programming problems with several thousand 
constraints and several thousand solution variables is 
common-place at the present time. 

In constructing the constraint inequalities the basic 
relations 

+ M  

IMq(X-- x~) = C ~ K~{go exp [2rcihx~]}h 
h =  - - M  

× exp [2rcihx] 
and 

l~q(x-x~,)= IMq(X--X~,)+ IMa(X + X~) 
q 1 1 +~(0,xp)+~(~,x~) 

(16) 

(17) 

are employed. The full-cell interatomic functions 
IMo(X--Xg) can be calculated from (16) while (17) gives 
the half-cell functions l~q(x-xg). In (16)gq=f,,f,,, 
where f ,  and fm are the scattering factors for atoms of 
the nth and ruth kinds, which correspond to an inter- 
atomic function of the qth kind. To apply (16) it is 
first necessary to establish an arbitrary correspondence 
which uniquely defines an interatomic-function-kind 
index q in terms of the atom-kind indices m and n. For 
example in a given situation q =  1 may denote oxygen- 
oxygen interatomic functions, while q = 3  denotes 
carbon-oxygen interatomic functions, and so on. 

Although the I~o(X- xg) could be computed straight- 
forwardly from (16) and (17) it is less tedious to pro- 
ceed in a different way. First the interatomic functions 
IMq()?~-0) of each kind are computed on the chosen 
divisional point system in (0,1). That is, the full-cell 
functions of each kind are initially located at the origin, 
and computed as a column vector on the points {2t}. 
Following this, the full-cell interatomic functions of 
each kind can be shifted to their successive off-origin 
divisional points by simple index interchanges, after 
which the additions in (17) can be performed. In 
general, stationary-atom scattering factors are em- 
ployed in (16) with Cesaro or Lanczos sigma-summa- 
tion (Goldak, 1971). The Patterson function PM(2i) 
must then be corrected to correspond as closely as 
possible to a stationary-atom crystal.When this has been 
done, the construction of the linear-programming 
problem is complete. 
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Determination of scale and temperature factors 

In constructing the constraint inequalities (14) it is 
necessary that the scattering factors used in computing 
the I~q(x-xT, ) be the same as those which occur in the 
partial Patterson function. In order to assure this, the 
observed structure amplitudes should be placed on an 
absolute scale, and a temperature-factor correction 
should be applied so that the resulting corrected 
structure amplitudes correspond as closely as possible 
to a stationary-atom crystal. If PM(x) is not placed on 
an absolute scale, it is clear that the Ng resulting from 
the solution of the linear-programming problem will 
all differ from the correct values by the scale factor 
which should have been applied to the structure am- 
plitudes. However, an acceptably accurate approxima- 
tion will be obtained; that is, S will be small. How- 
ever, if stationary-atom scattering factors are used in 
computing the I~q(x-x~,) when PM(x) corresponds to 
a thermally agitated crystal, then the best approxima- 
tion obtainable will generally be much less accurate 
than would be the case had stationary-atom scattering 
factors occurred in both I~q(x-x~,) and PM(x). In 
employing this method on a real crystal structure, it 
will never be possible to correct PM(x) to correspond 
exactly to a stationary-atom crystal. However, after the 
solution to the linear-programming problem, equations 
(13), (14) and (15), is obtained parametric linear- 
programming procedures can be employed to system- 
atically vary PM07i) until the lowest possible error S 
is obtained. The linear-programming procedures will 
be considered in more detail in a later section of this 
paper; here it suffices to state that the parametric- 
programming procedures are inefficient if large correc- 
tions to the initial PM(&) are required to obtain an 
acceptable approximation error S. Therefore it is 
desirable to initially make as accurate a scale and 
temperature-factor correction as is possible with an 
acceptable amount of effort. 

Wilson's (1942) method could be employed to ob- 
tain a scale factor and an average isotropic temper- 
ature factor. However, this method is well known to 
be inaccurate, and scale-factor errors of up to 50% 
have been reported (Harker, 1953, 1956; Kartha, 
1953). The method of Kartha (1953) and the similar 
but more general method of Krogh-Moe (1956) based 
on Parseval's theorem applied to the electron-density 
series require an advance knowledge of an average 
temperature factor. These inadequacies have led the 
author to devise a somewhat different method which 
permits a determination of the scale factor and an 
average isotropic temperature factor, or individual iso- 
tropic temperature factors in terms of the Patterson- 
function zero maximum. 

The essential idea behind the present method of 
scaling structure amplitudes can be stated quite clearly 
in qualitative terms. The electron-density maxima are 
decreased in maximum value, and broadened, by the 
temperature factor. The corresponding Patterson 

maxima are therefore affected in the same way. Thus 
the zero maximum of the Patterson function will be 
very broad with a relatively low maximum value if B 
is high. On the other hand, a low B factor produces a 
sharp zero maximum with a relatively high maximum 
value. Thus the 'shape' of the zero maximum should 
permit a quantitative evaluation of B. The scale factor 
K does not affect the broadness of the zero maximum 
but merely multiplies the entire Patterson function by 
K 2. Therefore, once B has been determined from the 
'shape' of the zero maximum, it should be possible to 
calculate K from the value of the zero maximum at the 
origin. 

In the following work, experimental structure fac- 
tors are designated Fhk~, while absolute, stationary- 
atom structure factors are denoted by Fhkz. Then, 
assuming an average isotropic Debye temperature 
factor B, 

/Vhk z = K exp [ -  B sin 20/}~2]Fhk I . (1 8) 

It is assumed that all the structure amplitudes involved 
have been determined on the same relative scale, 
except for F0oo, which is known on an absolute scale. 
Because of this scale difference the F00o term is treated 
separately by writing the Patterson function in the 
form 

KEFo2oo 
P(x,y,z)- V 

+ 1/V ~ ~. ~ ]Fnk,I 2 cos 2rc(hx+ky+lz). (19) 
h k l 

For the later work it is convenient to write this in the 
abbreviated form 

P(x,y,z)- K2F2°° +P(x ,y ,z )  (20) 
V 

It is well known that the Fourier coefficients of the 
pure, stationary-atom zero maximum can be identified 

N 

as { ~fJ}hkt, where f j  is the scattering factor of the 
j = l  

j t h  atom in the unit cell, and N is the number of atoms 
per unit cell. It is important to note that, even when a 
structure factor vanishes owing to a space-group ex- 
tinction, the corresponding Fourier coefficient of the 
pure zero maximum remains a positive number. The 
pure zero maximum, Z(x,y,z), of the Patterson func- 
tion (19) is given by 

K 2 
LT(x,y,z)= --~,. ~h ~ ~ exp [--2B sin 2 0/,). 2] 

N 

x { ~f.~},,k, cos 2zr(hx+ky+lz). (21) 
j = l  

Now the series 
1 Z(x,y,z,B)= -~ ~h ~ ~ exp [ - 2 B  sin 2 0/)~ 2] 

N 

x { ~f2}~k, COS 2rc(hx+ky+lz) (22) 
j = l  
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can be computed for any chosen value of B. If the zero 
maximum of the three-dimensional Patterson function 
is well resolved in a certain neighbourhood of the ori- 
gin, then in that neighbourhood it will be true that 

e ( x , y , z ) =  KZZ(x,y,z ,B) (23) 

provided the B used in computing Z(x ,y , z ,B)  is the 
same as the B which occurs in P(x,y,z).  It is therefore 
natural to consider a function K(x,y ,z ,B)  defined by 

P(x,y ,z)  
KZ(x 'Y 'z 'B)= Z(x ,y , z ,B) -F~oo/V"  (24) 

If the zero maximum of P(x,y ,z)  is fairly well 
resolved, then equation (7) can be used to determine B 
and K. If, for example, the approximation axis is the 
a crystallographic axis, then the expression 

e(x,O,0) 
KZ(x,O,O,B)= Z(x,O,O,B)_FZooo/V (25) 

is evaluated, for a succession of B values, on a set of 
points within 1 A of the origin. In general, the B used 
in Z(x,O,O,B) will not be the same as the B which x (A) 
occurs in P(x, 0, 0) and then K2(x, O, O, B) will increase 0.000 
or decrease outwards from the origin. However, when 0.025 
the proper value of B is used in Z(x,O,O,B), then o-o5o 0.075 
KZ(x, O, O, B) will be constant where the zero maximum 0.100 
is resolved. The values of B and K obtained in this 0.125 
manner can then be used to correct the observed 0.150 
structure amplitudes. 0.175 

0.200 
The method can be extended very easily to the case 0.225 

where different atoms of the crystal have different o.25o 
isotropic B factors. The Patterson function remains in 0.275 
the form of equation (19). If B~ is the Debye temper- 0.300 0.325 
ature factor of the j t h  atom of the unit cell, then the o.35o 
absolute scale zero maximum is given by 0.375 

Z(x,y,  z, B1, B2, . Bu) 0.400 • •, 0.425 
1 N 0"450 

= f / ~  ~ ~ { ~ f ~  exp [ - 2 B j  sin z O/22]}hk, 0"475 
j---1 0-500 

0.525 
x cos 2~z(hx + Icy + Iz). (26) 0.550 

0.575 
The value of the scale factor is obtained from a study 0.600 

0.625 
0.650 
0.675 
0.700 
0.725 

of 

K2(x,O,O, B1, B2, . . .. BN) 

P(x',O,O) 

Z(x, O, O, B1, Bz, . •., BN) -- - -  
F 2 o o  • 

(27) 

Equation (27) in principle permits a determination 
of the scale factor for the case where each atom of the 
unit cell has its own Debye temperature factor• However, 
for a crystal of even moderate complexity, the calcula- 
tion of K(x, O, O, BI, B2, • •., Biv) for all the possible 
combinations of B factors would require a prohibitive 
amount of work. There are, however, several cases of 
practical interest which are accessible to calculation• 
Crystals which consist of a few rather heavy atoms 
together with a relatively large number of light atoms 

are encountered very frequently in structure analysis. 
For crystals of this kind, one B factor could be ap- 
plied to the heavy atoms and another to the light 
atoms• For crystals which consist of several kinds of 
atoms of considerably different atomic numbers, dif- 
ferent temperature factors can be assigned to each 
atomic species. This situation commonly arises in the 
study of minerals and alloys. Such procedures should 
provide a reasonably good approximation without 
involving unduly tedious calculations• 

The method has been tested against the copper sul- 
phate pentahydrate structure (Beevers & Lipson, 1934; 
Bacon & Curry, 1962), and the ammonium biflouride 
structure (McDonald, 1960), and a few other struc- 
tures• The results of the copper sulphate pentahydrate 
calculations, which were done in terms of an isotropic 
average temperature factor, are given in Table 1. The 
scale factor was taken to be K=0.81 corresponding to 
B = 2 -0  A_ z. 

Table 1. Values of  K(x, 0, 0, B) 

B=1"50 B=1.75 B=2.00 B=2.25 B=2.50 
0.73 0.77 0.81 0.85 0.88 
0.73 0.77 0.81 0.85 0.88 
0.73 0.77 0-81 0.85 0.88 
0.73 0.77 0.81 0-85 0.88 
0.73 0.77 0.81 0.85 0.88 
0.74 0.77 0.81 0.84 0-88 
0.74 0.78 0.81 0.84 0-88 
0.74 0.78 0.81 0.84 0.88 
0-75 0.78 0.81 0.84 0.87 
0.75 0.78 0.81 0.84 0.87 
0.76 0.79 0.81 0.84 0.87 
0-76 0.79 0.81 0.84 0.86 
0.77 0.79 0.81 0.84 0.86 
0.78 0.80 0.82 0.84 0.86 
0-79 0-80 0.82 0.84 0.86 
0.79 0.81 0.82 0.84 0.85 
0.80 0.81 0.82 0-83 0.85 
0.81 0.82 0.82 0.83 0.85 
0.82 0.82 0.83 0.84 0.84 
0.83 0.83 0.83 0.84 0.84 
0.84 0.84 0.84 0-84 0.84 
0.86 0.85 0.84 0.84 0.84 
0.87 0.85 0.85 0.84 0.84 
0.88 0.86 0.85 0.85 0.84 
0.89 0.87 0-86 0.85 0.85 
0.90 0.88 0.87 0.86 0.85 
0.90 0.89 0.88 0-87 0-86 
0.91 0.90 0.89 0.88 0.87 
0.93 0.92 0.90 0.89 0.88 
0.94 0.93 0.92 0.91 0.90 

The scale factor reported by Beevers & Lipson was 
0-80. By contrast, a Wilson plot returned K=0.68, a 
result which is in error by approximately 15%. A 
second example calculation was done using the meas- 
ured ammonium biflouride structure amplitudes of 
McDonald (1960). These had been placed on an abso- 
lute scale by an experimental procedure which was 
supposed to be accurate to + 5%. The stiucture re- 
fined to R=0.055. Using an average isotropic temper- 
ature factor, the K and B factors were calculated from 
the present procedure as K=0-99 and B=2"60A 2. 
The method therefore appears to provide a convenient 
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means of  determining scale and temperature factors 
which are sufficiently accurate for the linear-pro- 
gramming procedures. 

Linear-programming procedures 

During the past twenty years the methods of linear 
programming have been rapidly developed, and they 
now provide an extremely flexible and powerful tool 
for the applied mathematician. Only a brief summary 
can be presented here, and the interested reader is 
referred to the excellent book of Hadley (1962) for a 
relatively complete exposition. 

The general linear-programming problem can be 
stated as follows: find a set of r non-negative variables 
xj which maximize (or minimize) the linear objective 
function 

z= ~ cjxj. (28) 
j = l  

Subject to the m linear constraints 

Z a~jxj>=<bi i = l , . . . , M .  (29) 
j = l  

In each constraint, only one of the signs > ,  = ,  or < 
applies. The elements a~j of the constraint matrix are 
known constants, as are the coefficients cj of the objec- 
tive function. Any vector X=[xl,.. . ,xr] which satis- 
fies the non-negativity restrictions and the constraints 
(29) is said to be a feasible solution, and generally there 
are an infinite number of these. Each inequality con- 
straint requires that an allowable solution be in a 
closed half space in a Euclidean E ' ;  each equality con- 
straint requires that the solution lie on the constraint 
hyperplane. Each of the non-negativity restrictions 
also requires that the solution be in a closed half 
space. The space region in which all the constraints 
and non-negativity restrictions are satisfied is a convex 
polyhedron in E' .  For a problem with m constraints 
and r > m  variables, the corners or extreme points of 
the solution polyhedron are defined by the intersection 
of m of the constraint hyperplanes. The objective func- 
tion is also a hyperplane which for some values of z 
will intersect the polyhedron of feasible solutions. To 
solve the linear-programming problem, it is in effect 
necessary to move the objective hyperplane parallel to 
itself until the maximum value of z is obtained while it 
still intersects the solution polyhedron. In general, the 
maximum or minimum value of z will be attained when 
the objective hyperplane intersects a corner of the solu- 
tion polyhedron. The solutions determined by the 
polyhedron corners are called basic feasible solutions, 
and that basic feasible solution which minimizes or 
maximizes the objective function, as the case may be, 
is called the optimal solution. Because the optimal 
solution is a corner point of the polyhedron, an optimal 
solution to a linear-programming problem of m con- 
straints never needs to have more than m variables 
different from zero. 

In order to solve a given problem, it is first of all 
necessary to transform the inequality constraints into 
equalities. If a constraint has the form 

~ a~jxj < bh, (30) 
j = l  

then a slack variable Xr+h > 0 is introduced so that the 
constraint becomes 

~ a~,ix J + xr + h = b,, . (31) 
j = l  

Similarly, constraints of the form 

~ akjXj > bk (32) 
j = l  

are transformed into 

~ akjXj-- X~+k > bk 
j = l  

by the introduction of the surplus variable x~+k>0. 
The objective function is not modified; that is, the cj 
are set to zero for j =  r + 1 , . . . ,  r + m. It can be shown 
that the solution of the linear-programming problem 
modified by the introduction of slack and surplus 
variables is the same as the solution to the original 
problem. 

In principle, a linear-programming problem could 
be solved by obtaining all basic feasible solutions and 
subsequently selecting the one which optimizes the 
objective function. A basic solution can be obtained 
by setting all but any m variables to zero in the con- 
straint equations, and solving the resulting m xm 
system of linear equations. The selected m columns of 
the constraint matrix then form a set of basis vectors, 
or simply a basis. Two cases can occur in the solution 
of the linear system of equations. The solution vari- 
ables may be all non-negative, in which case the solu- 
tion is a basic feasible solution, and corresponds to 
some corner point on the solution polyhedron. Alterna- 
tively, some solution variables may be negative, in 
which case the solution is basic but infeasible. This 
corresponds to a constraint hyperplane intersection 
outside the solution polyhedron. To step from one 
basic solution to another, it is only necessary to remove 
one column from the basis and replace it by some non- 
basis column. The resulting new system of linear equa- 
tions then provides a new basic solution which may be 
feasible or infeasible. 

In the simplex algorithm, an initial basis is con- 
structed in terms of artificial variables introduced ex- 
pressly to obtain a basis which provides an initial 
basic feasible solution. By replacing basis column vec- 
tors by non-basis vectors at each iteration step, the 
artificial variables are driven out of the basis and need 
not be considered subsequently. The essence of the 
method is the procedure used to determine, at each 
iteration, which vector should leave the basis and which 
vector should enter it. This is done in such a way that 
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only basic feasible solutions are considered, and 
furthermore the value of the objective function be- 
comes more nearly optimal at each iteration. Finally, 
an optimal solution is reached when a step from the 
current basic feasible solution to another which is 
adjacent on the solution polyhedron cannot further 
optimize the objective function. Since the solution 
polyhedron is convex, this optimum is always a global 
maximum or minimum; problems with local optima 
never arise, and this constitutes one of the great 
advantages of the linear-programming method in 
approximation problems. A further advantage of the 
method is the case with which a wide variety of addi- 
tional conditions may be imposed on the solution. For 
example, upper and lower bounds on the solution 
variables can be imposed in an almost trivial way. 

Several post-optimality problems can easily be 
handled. For example, after an optimum solution to a 
given problem has been obtained, new constraints can 
be added, or new variables can be added. As long as 
these new conditions do not drastically change the 
essential nature of the problem, a revised optimum 
solution can be found almost instantly. Parametric 
programming, which permits a systematic variation of 
the right-side vector or the objective function coeffi- 
cients, provides further adaptability, particularly for 
approximation problems. 

An example solution 

A simple example will serve to illustrate the applica- 
tion of the linear-programming problem. A crystal 
with a 6 A unit-cell edge and containing three oxygen 
atoms per unit cell, is considered. The fractional atom 
coordinates are x~ =0/118, x2=20/118 and x3 =30/I 18 
so that the structure is non-centrosymmetric. Absolute- 
scale, stationary-atom structure amplitudes were 
computed (to one decimal place) within the Mo limiting 
interval. 

To extract the vector set, a system of 60 equally 
spaced interatomic-function divisional points 0-0508 A 
apart were constructed on the interval [0, ½], with xl = 0 
and x~0 =½. To evaluate the accuracy of the approxi- 
mation, a set of 20 equally spaced points, with 2t =0  
and ~ 0 = 6 0  was constructed on [0,½]. The linear- 
programming problem which results thus contains 40 
constraints in 61 variables. 

The linear-programming problem is: 
Minimize 

Z = S  
subject to 

52.3NI + 103"3N2 x + 99.8N~ + . . .  +0"6N~0-1.0S< 227.4 
46.9NI+ 93"3N~z+91-7N~+... +0.7N~o-1.0S<214.0 

0"6NI+ 1-3Nz ~+ 1.3N~+.. +52"3N~0-1"0S< 11"9 
52.3NI + 103.4Nz ~ + 99.8N~ + . . .  + 0.6N6~0 + 1.0S_> 227-4 
. . . , . .  o . . . . . . .  . . . . . .  ° . . . . . . . , . . . . , . . . , . . . . . . . . . .  

.. 6NI+  1.3N~+ 1.4N~+..+52.3N~o+l.OS> 11.9 
(34) 

and also subject to 

N } > 0  }= 1 ,2 , . . . ,60 .  

The above problem was constructed in suitable form 
by a program written in the PL1/F language, then 
passed on to a program written in the IBM MPS 
(Mathematical Programming System) language for 
solution of the linear-programming problem. After 91 
iterations, which required 2.06 minutes CPU time, the 
optimal solution was obtained. Rounded to two de- 
cimal places, the solution was NI=3.00,  NI~= 1.00, 
N i t =  1.00 and N~I= 1.00 with all other Nj=0.  This 
solution provides the correct vector set. The error of 
the approximation is 8 x 10 -5 Patterson units, so that 
the generalized polynomial provides an extremely 
accurate representation of the Patterson function. The 
accuracy of the approximation depends on the number 
of divisional points used to evaluate its accuracy. If 
Q divisional points are employed for this purpose, then 
the linear-programming problem will contain 2Q con- 
straints and no more than 2Q variables can be non- 
zero. When the previous problem was formulated 
with six divisional points for the evaluation of the 
accuracy of the approximation, the resulting solution 
bore little resemblance to the correct vector set. The 
method laas been used, with no numerical difficulties, 
for 'synthetic' crystals with unit-cell edge lengths up 
to 42 A and containing 300 atoms of one kind per unit 
cell (with no heavy atom); the linear-programming 
problems ranged in size up to 801 solution variables 
and 400 constraints. The ability to deal with these 
relatively large problems without difficulty is the 
principal advantage of the Tchebycheff method over 
the interpolatory procedure previously published 
(Goldak, 1969). If the above example were formulated 
as an interpolatory problem with 60 interatomic 
function location points, the resulting 60 by 60 system 
of linear equations would be hopelessly ill-conditioned, 
and in order to obtain meaningful results, the Patterson 
function would have to be known to a very large num- 
ber of decimal places. 

The calculation (34) is useful as an example but is 
unrealistic in that the interatomic functions in the 
Patterson function were situated exactly on the divi- 
sional points, and this will not occur in practical cases. 
When the interatomic functions are located exactly 
on the divisional points, the resulting Ng will be very 
nearly integral, as in the example, and the vector set 
will be well defined. However, an interatomic function 
located between two divisional points provides a con- 
tribution to the N~ values of both adjacent divisional 
points. In a specific case, rather than obtaining N~0 = 
0.00, N~I = 0.00, N~z = 1.00, N~3 =0.00, we may obtain 
NsZ0=0.00, N~=0-25,  N~z=0.75, NsZ3=0.00 if an 
interatomic function of the second kind were located 
between the 51st and 52nd divisional point of the 
second kind. Since dense divisional-point systems can 
be used, the resolution of the present method is far 
greater than the earlier interpolatory procedure, and 
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thus interatomic functions located between the divi- 
sional points pose a less serious problem. The most 
appealing solution would be to impose additional con- 
straints on the linear-programming problem, namely 
that the N~ be integral. Thus the N~ would be the solu- 
tion of an integer-programming problem. Unfortu- 
nately, computational experience with integer-program- 
ming algorithms has been disappointing, and no 
generally time-effective procedure is available. An 
attractive way of solving this problem involves the use 
of a large number of interatomic functions with the 
number of constraints made equal to the number of 
interatomic functions in the Patterson function. In 
addition, an upper bound of 1.0 is imposed on each 
solution variable. As a result a solution will be obtained 
in which every non-zero solution variable will be nearly 
equal to 1.0. Then by employing parametric linear- 
programming methods, each divisional point can be 
systematically displaced (for example by using the 
P A R A C O L  procedme of the IBM/MPS system) until 
the most accurate possible approximation has been 
obtained, still subject to the constraint that each non- 
zero solution variable must be nearly equal to 1-0. 
Of course, for complex structures, this procedure 
would involve a very large number of constraints, and 
a solution upper bound of 2.0 or more would be ie- 
quired to reduce the size of the problem. 

When the method is applied to complex structures, 
most of the solution variables will turn out to be zero, 
providing the number of divisional points is large 
compared to the number of constraints. As a second 
step, new interatomic-function location points can be 
introduced in the neighbourhood of the interatomic- 
function locations, while the divisional points associ- 
ated with zero solution variables can be removed from 
the problem. In this way, the divisional points can be 
made very dense near the interatomic functions. 
Consequently, the resolution of the problem is greatly 
improved without increasing the size of the problem. 

The above considerations indicate that the method 
can be applied to the problem of vector-set extraction 
in a variety of ways, and an optimum procedure has 
not yet been determined. The results of further tests, 
against both synthetic and real structures, will be re- 
ported in a later paper. 
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